Vader Dice Tower

TL;DR: I made a villainous dice tower for a friend’s bday, combining two of his favorite things—Star Wars and board gaming.

October was a pretty busy month for me with work and fantasy football both ramping up. However, I’m very happy I was able to get some design and project time in. My friend Nick’s birthday was earlier this week, and I wanted to make him something practical yet personalized. Anybody who knows him at all knows how much he loves both board games and Star Wars, so to me, printing a Darth Vader dice tower was simply a no brainer.

For those of you who may not know, a dice tower is a very simple device to ensure fair rolls while keeping dice from flying all over the place and messing up stuff on the table. Dice towers can take on a wide variety of shapes and sizes. All that is really needed is some sort of aperture at the top to put dice in, a path which randomizes spins, and a tray to collect them at the end.

Before I started designing, I did a quick search on thingiverse and other 3d print sharing sites to make sure I wasn’t completely reinventing the wheel. I found a few Vader dice towers, but to be honest, I didn’t think they were very good in terms of amount of detail and general aesthetics. I was fortunate to find a great model of Darth Vader to begin with: https://www.myminifactory.com/object/3d-print-star-wars-darth-vader-30-cm-tall-60500.

Essentially my plan was as follows:

  1. Reorient and resize the head to maximize the print area on my bed.
  2. Create the dice travel path leading from the top of the head out of the mouth.
  3. Subtract the path model from the head model.
  4. Create a tray to catch the dice
  5. Print the parts
  6. Ship it

Parts 1-4 went incredibly smoothly all within Fusion 360. I successfully printed a ¼ size test part to ensure the path I created could be printed without any internal support structures to minimize post processing work. Unfortunately, I then ran into printer issues I had never previously encountered…

My Monoprice Maker Select Plus (aka Wanhao Duplicator III Plus clone) has been a workhorse without any major issues for years now. Of course, she decided to act up when I was up against a deadline since birth dates are immutable. My printer would randomly stop working and send bed temperature errors before rebooting. I pinpointed the problem to the thermistor on my print bed, but I didn’t have time to mess around. Luckily for me, my neighbor across the street literally has a print farm in his bedroom (15 machines and counting) so I was still able to get the parts made on time. The only unfortunate thing is that his machines are smaller than mine—so he had to scale the size down by 5% to get them to fit. (I found out later that the fix I needed on my printer was incredibly basic: the kapton tape holding the thermistor to the bed loosened over time, thus the printer received intermittent temperature readings.)

Luckily, the 5% reduction in size did not severely diminish the part’s functionality:

It works! May the Force Be With You!

I’m incredibly happy with the results of this project. I enjoyed the challenge of modifying an existing mesh to create a new, meaningful, and practical object. Even though UPS spoiled the surprise by giving Nick a notification about the arrival of a package sent from my area, and the package arrived late, I’m pretty sure he was very pleased upon arrival.  

Thanks for making it to the end of this post—here’s an incredibly sparse build gallery:

Supreme EL Box

TL;DR: For my friend Teddy’s birthday, I made him a hypebeast worthy (if I do say so myself) Supreme EL box.

My good friend Teddy is one of the biggest hypebeasts I know, so I wanted to make something he would like. I went back to the EL wire well again for this project (see: headbands http://www.andrewpip.com/2019/03/28/el-wire-lighted-headbands/ and sign <http://www.andrewpip.com/2019/04/07/faux-neon-signage>). However, I needed to dig into my paint supplies dating all the way back to my Iron Man Mask (http://www.andrewpip.com/2018/05/06/infinity-war-masks).

Conceptually, this project was relatively simple:

  1. I made a box.
  2. I cut some channel shaped holes in the box.
  3. I painted the box.
  4. I put my wire through the box.
  5. I gave Teddy the box.

For this project, honestly I think the gallery will explain things better than I can in words, so here it is (it looks nicer if you click to open the full-sized images):

Faux-Neon Signage

TL;DR: For my friend Gina’s birthday, I made her a faux-neon sign to decorate her new condo with. I ended up making a few different versions of this sign and through the process, I learned several useful tricks to speed up vector image modifications, which will definitely make it easier for me going forward. 

I continued playing with el wire since I bought so much for my headband project. Since my friend’s birthday was coming up, I figured it was a great opportunity to make something cool with it. I decided to make a faux-neon sign reading “Mama G’s House”.

I started by searching for neon sign fonts on google and downloaded a few to try out including “Warnes”, “La Patio Script”, “I am online with u”, and “Fenotype Neon”. All of them were free to download, but not all of them were free for commercial usage, which is fine for this project as I’m not selling it.

The first prototype I made used Warnes as the base font. I really liked how the letters all connect at the bottom. However, I needed to do a bit of surgery in Inkscape to connect the disparate words after vectorization:

The main modifications I made to this first font were just around connecting the letters and adjusting some of the spacing

I imported the SVG directly into a sketch Fusion 360 and resized it to ensure I had a ~3mm wide channel all over. Next, I modified the sketch to remove areas near the bottom where the lettering overlapped. In a fashion similar to what I did for the EL headbands, I extruded a positive model of the letters. Next, I needed to move the apostrophe body and combine it with the rest of the lettering. Then, I created a sketch, offset the entire object, and cleaned up the line overlapping lines created by the offset tool. After extruding the outlined body, I cut the positive lettering model out:

I reused the technique I discovered while making the EL headbands of cutting the positive channel from the main body

After slicing the STL in Cura, and waiting about 3 hours for production, the print came out pretty well:

However, with the physical model in front of me, I saw the font I used had a few issues. Primarily, although the channels I made fit the el wire, there were too many places where stringing it required a double back, which was not accounted for. Oops. Luckily, I hadn’t spent a lot of time on this, and I figured Gina could still use it as a nice decoration even without lighting effects.

The next font I tried was called “I am online with u” which had the advantage of being a single connected line. Although this font was more ideal out of the box, I still needed to tweak the vector version to make it work properly. Essentially, I just modified the “corners” of the letters to allow for more space wherever they changed direction, I adjusted the spacing between words and letters, and I moved and combined the apostrophe to overlap with the letters.

I modified this font a bit more heavily to ensure a good print. The biggest tweak was widening the letters where they changed direction so the EL wire could bend around.

My workflow in Fusion 360 was essentially identical to the one I used for the previous version of the sign: import svg, scale, and clean up sketch -> extrude a positive channel -> offset the body and extrude the outline -> use the combine tool to cut the positive channel away from the outlined body. Unfortunately, this part was a bit too big to fit on my printer in one piece, so I needed to split it into two. The split created a physical weakness which I shored up by creating a small base to hold it together and help the entire assembly stand upright.

The split was unfortunate but necessary to allow me to actually manufacture the sign. The base I made fit very well and helps keep the assembly standing too.

The print didn’t take very long—maybe about 4 hours in total for all the pieces. I was pretty happy with the results, and I think she was too 🙂

Shiba Cookie Stamp

TL;DR: I made a shiba cookie cutter/face stamp combo for a friend. As a bonus, I made a bone-shaped stamp with her dog’s name on it as well :D.

First up, here’s a photo of the completed cookie cutter, stamp, and name stamp. The overall dimensions of the stamp are approximately 3in in width and 2.75in in height. 

I received a request from a friend to design and print some stuff for her Shiba’s birthday coming up. I used a photo of her dog’s vest to use as a template I could trace with splines in Fusion 360. In my first version, I made a combined cutter and stamp by extruding various parts of the face to different heights.

While the first prototype worked on polymer clay, it was pretty clear that a few simple tweaks could make it easier to use. First and foremost, it was pretty difficult to press the stamp down since I didn’t include any holes for air to escape. Second, it was a bit difficult to remove everything from the press. Third, since I had fixed heights, the cookies the stamp made would likewise have no flexibility.

Changing to an outline cutter and a stamp for the face addressed all of the issues above and was very simple to do in CAD. The trickiest part was my desire to have a detachable handle to cut down printing time. I created mounting points for the handle by cutting holes beneath the eyes. On the stamp, I made sure to add a larger draft angle on the extruded areas to make it easier to detach from the dough.

I also made a simple name stamp. I was pleasantly surprised at how easy it was to create extruded text in Fusion. The rest of the bone shape and handle were essentially just decorative. I think the name stamp has a potential issue with the letters being too close together, but that should be something easily addressed in a future revision.