El Wire Lighted Headbands

TL;DR: My friends asked me to make custom light up costume headbands for them in the style of Naruto… so I did. I 3D printed channels through which I fed electroluminescent wire to make logos of their favorite DJ’s. While the project is simple in concept, I needed to dust off a bunch of tools I hadn’t utilized in a while to complete it. While I’m not quite finished with these, I’m too excited about how the project is looking NOT to share.

In the anime Naruto, the characters wear headbands to protect their foreheads while they fight. My friends wanted ones that light up for their costumes, and asked if I could help. If you want to skip over a lot of unnecessary detail, just go to the gallery at the bottom where I put the build photos 😛

El wire is a fantastic way to add lighting effects to projects since it is very bendable, easy to install, and does not require any programming at all (just add power!). Before this project, I hadn’t played with electroluminescent (el) wire for years, so I was excited to jump back in. The technology has become a lot more common and widely available than I remember—there’re tons of vendors for wire and the requisite DC to AC inverters. Unfortunately, the inverters still make an annoying high pitched buzz whenever they’re on.

In terms of the mechanical design, the headband was very simple. I created a base in Fusion 360 CAD to reuse in each version with a different logo. The majority of my time has actually been spent optimizing the image preparation pipeline. To go from a 2D-logo to a cut channel, the process I went through was as follows:

  • Prepare an outline image in Gimp (a free Photoshop competitor). The easiest way I found to do this was by using the fuzzy select tool to select the outline of the image I wanted to convert, then using the stroke selection tool.
Using stroke was key to getting a nice solid outline to begin my vector image with
  • After saving the image as a bitmap in Gimp, I imported the file in Inkscape (similar to Adobe Illustrator) and stroked the bitmap to a path. I resized the vector image to fit my headband base, and manually edited the nodes until all parts of the path were approximately 2.5mm in width to fit my el wire.
I ended up doing quite a bit of manual manipulation to change the logo shape such that the 2.5mm channels would fit and still look somewhat like what I started with. Simple automatic offsetting didn’t work well at all.
  • Initially, I was exporting vector images as 2D CAD-friendly DXF files. However, I made the groundbreaking discovery that Fusion 360 actually lets you directly import and use SVG files. Using the vector files (svg) directly is a lot more computationally friendly and MUCH easier to work with. For example, the dxf version of the Illenium logo had upwards of 670 line elements, whereas the svg file had two curves.
I can’t believe it took me so long to realize I could use SVG’s directly in Fusion 360… this was a gamechanger for my speed of productivity.
  • Within Fusion 360, I directly extruded the imported drawing. Next, I did a few manipulations with the combine and move bodies menu to create a “positive” model of the channel I wanted to CUT from the headband.
It’s a bit difficult to see, but I moved the positive cut out forward so it only intersects the model for the last 2.5mm of its extruded depth.
  • One of the limitations of working with el wire is that there is a minimum bend radius before you can actually break the wire and cause shorts. Unfortunately, since I was making headbands most of the detailed bends weren’t physically possible to make in a single piece. To maintain sharp edges required for the logo designs, I created pass through holes. This allows me to bend the wire in an unsightly loop where it can’t be seen in the final product. Positive models of the pass through holes were created by extruding cylinders from behind the headband up to the channel model.
Thru holes were simple extruded cylinders
  • Lastly, I created some “channels” on the back of the headbands to accommodate the loops. In an early prototype, I created actual channels out of spline sketches, but that proved to be a lot of work for no reason. Now, I’ve simply created large inset areas that can fit the el wire loops. It’s much less effort to achieve the same result. The positives for this were extruded initially as separate bodies to the channels so I could shift them backward about 0.8mm before joining to the rest of the positive channel model.
I cut the positive channel model away from the base headband shape
  • A simple combine, export as STL, and slicing in Cura resulted in a pretty decent print, if I do say so myself ;).
Here’s my first prototype blinking 😀

The first prototype I printed was in black PLA before I received this gorgeous silk silver shiny PLA made by Hatchbox on Amazon. I quickly realized that I didn’t have a great way of making the fabric for the bands since I don’t have any sewing skills. I am incredibly lucky to have super talented parents (check out my dad’s website here… he’s much more artistically talented than I am: www.bounsaypipathsouk.com) who are always willing to help. I Facetime called them to explain what I was making and mailed them my first sample. A few days later, I received some photos of my prototype solidly attached to a custom headband they made, and should receive them next week :D.

My parents were able to deliver!!

While there are still a few improvements left for me to make before I deliver my final product, I’m pretty stoked at how well the project has turned out so far, and just couldn’t wait to share.

As promised, here’s a gallery of the build:

Oddish Planter!

TL;DR: I created a custom Oddish planter model and printed it. I messed up a few times, but learned from it, which was pretty cool. I’m going to make some other planters too, lemme know if you want one 😉

Here’s a bunch of completed prints outfitted with airplants… I finished some of them with an epoxy sealant to make them super shiny.

Here are the details if you’re interested 😛

The biggest category of goods I’ve always wanted to make on my 3D printer involves Pokemon. I’ve seen a bunch of planters for sale on Etsy and the like, but wanted to try my hand at completing my own designs, so I did. I chose to tackle Oddish first cause it’s a popular with ‘mon with a very simple shape. This ended up being a good learning project because for the very first time on my printer, I needed to troubleshoot print settings and tweak the model to prevent failed prints.

The initial design only took about a half hour to complete, and most of the time was spent trying to finalize the face, feet, and drainage hole designs and positions. I printed the first design with supports thinking it wouldn’t be a big deal, unfortunately, it ended up being a huge pain to remove. For my next iteration, I added a plane cut to the bottom, so the model could sit flat on the table and print without support. While this worked pretty well, I wanted to see if I could improve on the overhang quality.

Then I tried printing the Oddish upside-down. Despite requiring more support material, I liked the fact that all of the areas with overhang would not be visible (except for the tips of the feet). As an additional benefit, I removed the plane cut and give Oddish a nice rounded booty. The first time I tried this though, the support broke resulting in misprinted feet. I tried re-leveling my print bed and adding extra surface adhesive—to no avail.

The breakthrough came when I modified the design, enlarging the feet and changing the angle they sat at such that the support towers started with a larger, more stable base. While I had a successful upside-down print, the support towers left a more visible mark than I envisioned. Additionally, the rounded tush was actually worse than a flat-bottomed one, since Oddish would roll around -_-. The final iteration added the plane cut back in so Oddish would be able to sit flush on the ground.

I’ll be honest–the blue/green filament I bought from Amaz3D on Amazon left me a bit wanting. I’ve had success using their plain black and plain white material before with great success. On initial inspection, the color is spot on what I need for Oddish, so I was pretty excited at the lack of post-print-painting I would need to do. However, after the prints started coming out, there are definitely some noticeable inconsistencies in the filament color, which is a bit disappointing.

The last thing I tried out with these prints was the application of XTC-3D coating to smooth out layer lines and give the parts a shiny finish. The coating is essentially just a 2-part epoxy, which you mix in a 2:1 ratio. The coating ended up being a bit thicker than I anticipated, so I’m glad I decided to wear disposable gloves. The paintbrush I used to apply the epoxy sacrificed its life to give four models a new clear coat. I let the models dry overnight on top of wine bottles, and the result is actually very impressively shiny—you can actually see your reflection in their faces :o.

I posted a little preview photo of the first print (the one with too much support) before my numerous iterations on the model, and managed to get enough interest from a few friends for commissions–yay social media! I’m super happy to say that I made the first sales of my own custom designed planters :D!! I’m excited to take the numerous lessons I learned from this project to continue making new models (Bellossom is up next) for custom planters.